An endogenous substrate for the insulin receptor-associated tyrosine kinase.

نویسندگان

  • R W Rees-Jones
  • S I Taylor
چکیده

Insulin binding to its receptor stimulates a tyrosine-specific protein kinase. This enzyme phosphorylates the insulin receptor, as well as a variety of exogenous substrates in vitro. In the present studies, we have identified an endogenous substrate for the insulin receptor-associated kinase. We studied insulin-stimulated protein phosphorylation in partially purified insulin receptor preparations from the livers of dexamethasone-treated rats. In this cell-free system, insulin stimulated the phosphorylation of its own receptor as well as of a phosphoprotein of apparent Mr = 120,000 (termed pp120). pp120 was not immunoprecipitated by three anti-receptor antisera, nor was the receptor immunoprecipitated by antisera raised against pp120, suggesting that pp120 is not antigenically related or tightly bound to the insulin receptor. Dose-response curves for receptor and pp120 phosphorylation stimulated by pork insulin were essentially identical, and showed the appropriate specificity (insulin much greater than proinsulin) for a receptor-mediated event. Phosphoamino acid analysis revealed that insulin stimulated the incorporation of 32P predominantly into tyrosine residues of pp120. Casein, an artificial substrate for the insulin receptor kinase, competed with pp120 for insulin-stimulated phosphorylation. Phosphorylation of pp120 was rapid (half-maximal effect within 2 min at 24 degrees C) and, like receptor phosphorylation, was supported with Mn2+ or Mg2+ as divalent cation and ATP as the phosphate donor. While receptor autophosphorylation and artificial substrate phosphorylation were not altered by prior treatment of the rats with dexamethasone, insulin-stimulated pp120 phosphorylation was enhanced in preparations derived from dexamethasone-treated rats, suggesting an alteration of pp120, not the receptor, as a result of dexamethasone-treatment. Further studies of this newly identified endogenous substrate may help clarify the physiologic role of the insulin receptor-associated kinase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase.

Increased serine phosphorylation of insulin receptor substrate-1 (IRS-1) has been observed in several systems to correlate with a decreased ability of the insulin receptor to tyrosine-phosphorylate this endogenous substrate and to inhibit its subsequent association with phosphatidylinositol 3-kinase. In the present studies we have examined the potential role of the mitogen-activated protein (MA...

متن کامل

An Mr 180,000 protein is an endogenous substrate for the insulin-receptor-associated tyrosine kinase in human placenta.

The beta-subunit of the insulin receptor contains a tyrosine-specific protein kinase. Insulin binding activates this kinase and causes phosphorylation of the beta-subunit of the insulin receptor. It is believed that phosphorylation of other proteins might transmit the insulin signal from the receptor to the cell. In the present study we used a polyclonal anti-phosphotyrosine antibody to detect ...

متن کامل

Protein kinase C-zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin.

Protein kinase C-zeta (PKC-zeta) is a serine/threonine kinase downstream from phosphatidylinositol 3-kinase in insulin signaling pathways. However, specific substrates for PKC-zeta that participate in the biological actions of insulin have not been reported. In the present study, we identified insulin receptor substrate-1 (IRS-1) as a novel substrate for PKC-zeta. Under in vitro conditions, wil...

متن کامل

Insulin-mimetic anti-insulin receptor monoclonal antibodies stimulate receptor kinase activity in intact cells.

In the present studies, nine different monoclonal antibodies to the extracellular domain of the insulin receptor were tested in three different cell types for their ability to stimulate the intrinsic tyrosine kinase activity of the receptor. Previous studies had suggested that several of these monoclonal antibodies stimulate biological responses without stimulating the intrinsic tyrosine kinase...

متن کامل

Phosphatidylinositol kinase or an associated protein is a substrate for the insulin receptor tyrosine kinase.

The tyrosine kinase activity intrinsic to the insulin receptor is thought to be important in eliciting the intracellular responses to insulin; however, it has been difficult to determine the biochemical functions of the proteins which are substrates for this receptor. Treatment of Chinese hamster ovary (CHO) cells overexpressing the human insulin receptor (CHO.T) with insulin results in a 38 +/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 260 7  شماره 

صفحات  -

تاریخ انتشار 1985